
Reading types

data Bool = False | True

This type has two possible values. The pipe between
them indicates exclusive disjunction: if you have a Bool

value, it will either be True or False, never both.

data Maybe a = Nothing | Just a

This type takes another type as an argument; the a type
argument is polymorphic and could be any type. Maybe

also encodes the possibility of not returning a meaningful
value, xor an a value wrapped inside a constructor.

data Either a b = Left a | Right b

Another disjunctive type, this time taking two polymor-
phic type arguments. It’s important to note here that a and
b may be different types but are not required to be.

data (,) a b = (,) a b

This type is not disjunctive; it is conjunctive. It requires
both an a and a b argument in order to construct a value
of this type. Again, a and bmay be different types but are
not required to be.

Function application with structure

-- Functor's fmap

(<$>) :: (a -> b) -> Maybe a -> Maybe b

Lifts the function (a -> b) into the Maybe structure, ap-
plies it to the a value inside, gives you a Maybe b. Of course,
if the Maybe value was Nothing, you get Nothing out.

-- Applicative's tie-fighter

(<*>) :: Maybe (a -> b) -> Maybe a -> Maybe b

Accepts two arguments: a function which might exist
and a value which might exist, if you’re lucky. Applies the
function to the second argument if both exist. Any Nothing

means it’s all Nothing.

-- Monad's bind

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

Similar to the Applicative except now the argument func-
tion might be producing more structure. If nothing is a
Nothing, then you’d end up with a Just (Just a) result. The
magic of Monad is that join can smush that nested struc-
ture.

traverse :: (a -> IO b) -> [a] -> IO [b]

IO is the datatype we use when we’ll be performing ef-
fects. You might find that you have a list of IO actions that,
when performed, get you one response, but you really
wanted one big IO action that would give you a list of re-
sponses. traverse to the rescue! traverse is fmap and sequence

combined, where sequence flips [IO b] into IO [b].

Comparing types

We can see patterns in common functions by matching up
type signatures.

Function application

Apply a function, lifting over structure where necessary.

($) :: (a -> b) -> a -> b

(<$>) :: Functor f => (a -> b) -> f a -> f b

(<*>) :: Applicative f => f (a -> b) -> f a -> f b

(=<<) :: Monad f => (a -> f b) -> f a -> f b

mapM :: (Monad f, Traversable t) =>

(a -> f b) -> t a -> f (t b)

traverse :: (Applicative f, Traversable t) =>

(a -> f b) -> t a -> f (t b)

Manipulating structure

Structural manipulation without applying or lifting a func-
tion first.

sequence :: (Monad f, Traversable t) =>

t (f a) -> f (t a)

join :: Monad f => f (f a) -> f a

Bind and traverse are made of smaller parts

bind v f = join (fmap f v)

bind :: Monad m => m a -> (a -> m b) -> m b

(>>=) :: Monad m => m a -> (a -> m b) -> m b

trav f v = sequenceA (fmap f v)

trav :: (Applicative f, Traversable t) =>

(a -> f b) -> t a -> f (t b)

traverse :: (Applicative f, Traversable t) =>

(a -> f b) -> t a -> f (t b)

Composition

Function composition alongside Kleisli composition, that
is, composition in the presence of additional structure.

(.) :: (b -> c) -> (a -> b) -> a -> c

(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c

(psst, composition is not as weird as it looks!)

(f . g) x = f (g x)

-- in GHCi

> ((+3) . (*10)) 4

> 43

-- lining up the arguments with the parameters

(.) :: (b -> c) -> (a -> b) -> a -> c

-- (+3) (*10) 4 43

	Reading types
	Comparing types

